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We studymixing of two fluids of different viscosity in amicrofluidic channel or porousmedium.We show

that the synergetic action of alternating injection and viscous fingering leads to a dramatic increase inmixing

efficiency at high Péclet numbers. Based on observations from high-resolution simulations, we develop a

theoretical model of mixing efficiency that combines a hyperbolic mixing model of the channelized region

ahead and a mixing-dissipation model of the pseudosteady region behind. Our macroscopic model

quantitatively reproduces the evolution of the average degree of mixing along the flow direction and can

be used as a design tool to optimize mixing from viscous fingering in a microfluidic channel.
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Efficient fluid mixing at low Reynolds numbers is
challenging because one cannot rely on either turbulence
or inertial effects to induce disorder in the velocity field.
Several strategies have been proposed to achieve fast mix-
ing in small devices such as microfluidic cells [1,2], includ-
ing grooved walls [3], bubble capillary flows [4], pulsating
injection [5], electroosmosis [6], electrokinetics [7], and
acoustic stimulation [8]. Alternating injection of two fluids
has also been proposed to enhance mixing in laminar-flow
conditions [9,10].

Recently, we have shown that miscible viscous
fingering—a hydrodynamic instability that takes place
when a less viscous fluid displaces a more viscous
fluid—can enhance mixing in periodic Darcy flows, such
as flows in Hele-Shaw cells or porous media [11].
Enhanced mixing due to viscous fingering emerges from
the velocity disorder and the additional interfacial area
created between the two fluids as a result of the hydro-
dynamic instability. Creation of new fluid-fluid interfaces
is accelerated by tip splitting of the fingers and retarded
by channeling, which are the two primary mechanisms
controlling the dynamics of viscous fingering [11–14].
Fluid mixing from viscous fingering is determined by the
delicate balance of these two mechanisms.

Periodic flows, however, while conceptually important
to gain understanding, are difficult to achieve in practice.
Here, we study mixing of two miscible fluids of different
viscosities due to the combined effect of viscous fingering
and alternating injection and find that the two can act
synergistically to achieve rapid mixing at low Reynolds
numbers and high Péclet numbers, typical of microfluidic
flows. We perform high-resolution numerical simulations
that elucidate the phenomenon and guide us to formulate a
macroscopic model that captures the universal signature of
mixing from viscous fingering and alternating injection.
Previous studies of viscous fingering in alternating injec-
tion [e.g.,[14–16]] analyze spreading of a single slug as
a result of viscous fingering, where the quantities of
interest are the transverse-averaged concentration and the

longitudinal variance of the concentration field. However,
it is mixing, not spreading, that controls chemical reactions
and dilution of peak concentrations [17], a process that
requires estimating the variance of the concentration
field [18,19].
We consider flow of two fluids of different viscosities�1

and �2, where �1 <�2, through a homogeneous two-
dimensional porous medium or a Hele-Shaw cell (two
parallel plates separated by a thin gap). We adopt a
Darcy formulation, which is well accepted for single-phase
flows in porous media [20] and has been used extensively
to model flow in a Hele-Shaw cell for a range of Péclet
numbers and viscosity ratios [12,13,21–24]. Although
three-dimensional effects could play a role in a viscously
unstable Hele-Shaw flow, these would require 3D Stokes
simulations that would incur in a formidable computational
cost, and likely would not introduce a fundamental quali-
tative departure from our findings. The porosity � and
permeability k are constant. The length and width of the
domain are L andW, respectively. We define concentration
c as the volume fraction of the less viscous fluid in the
mixture. We assume that the more viscous fluid completely
fills the cell initially. We assume an exponential viscosity

model�ðcÞ¼�1e
Rð1�cÞ, where R ¼ lnM andM¼�2=�1

is the viscosity contrast. We simulate alternating injection,
in which one cycle corresponds to a slug of the less viscous
fluid entering the flow cell at constant rate from the left
boundary followed by a slug of the more viscous fluid at
the same rate. Let As ¼ �Wls be the volume of the less
viscous slug. The mean velocity is in the x direction and of
magnitudeU. The outlet is a natural outflow boundary. The
two fluids are assumed to be first-contact miscible, neu-
trally buoyant, and incompressible. First-contact miscibil-
ity means the fluids mix instantaneously in all proportions
to form a single phase and surface tension effects are
absent. Like in many previous studies on viscous fingering
[16,23–25], the diffusion coefficient D between the fluids
is assumed to be constant, isotropic, and independent of
concentration. Although D is likely velocity dependent,
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this effect appears not to play a major role on macroscopic
features of viscous fingering at high Péclet numbers and
late times [13], and a hydrodynamic dispersion model for
flows with large viscosity contrast, especially in the pre-
asymptotic regime, is still lacking [23,26]. To nondimen-
sionalize the system, we choose the ‘‘slug length’’ ls as the
characteristic length,U as the characteristic velocity,�1 as
the characteristic viscosity, P ¼ �1Uls=k as the character-
istic pressure, and T ¼ �ls=U as the characteristic time.
The governing equations in dimensionless form are [22]

@tcþr �
�
uc� 1

Pe
rc

�
¼ 0; (1)

u ¼ � 1

�ðcÞ rp; r � u ¼ 0; (2)

in x 2 ½0; L=ls� and y 2 ½0; W=ls�, where u ¼ ½u; v� and p
are the velocity and pressure fields. The initial condition
is cjt¼0¼0. The boundary conditions are cjy¼0 ¼
cjy¼W=lsðperiodic inyÞ;u �njx¼0 ¼�1ðinflowÞ, pjx¼L=ls ¼
0 ðoutflowÞ, and alternating injection

ðu � nÞcjx¼0 ¼
��1 if 0< remðt; 1=rsÞ � 1

0 if 1< remðt; 1=rsÞ< 1=rs;
(3)

where n is the outward unit normal and remð�Þ is the
remainder function. We fix the aspect ratio L=W ¼ 8 and
the slug ratio rs ¼ 0:5 (1:1 fluid volume ratio). The slug
ratio is also the dimensionless concentration of the per-
fectly mixed fluid. The dimensionless parameters govern-
ing fluid mixing are the Péclet number Pe ¼ Uls=D, the
log-viscosity contrast R in the viscosity law, and the
dimensionless length L=ls of the channel.

We discretize Eq. (1) using sixth-order compact finite
differences in the streamwise direction and the fast Fourier
transform in the transverse direction, which is periodic
[23,25,27]. We advance in time using a third-order
Runge-Kutta scheme. To gain numerical stability at high
M, we solve the pressure equation (2) directly using finite
volumes with a two-point flux approximation, instead of
using the stream function vorticity approach [22]. Figure 1
shows a snapshot of the concentration field from an
alternating-injection simulation.

Fluid mixing results in decay of the concentration vari-
ance, and the mean scalar dissipation rate determines the
rate of this decay [11,18,28,29]. To investigate mixing in a
channel under alternating injection, we study the trans-
versely averaged profiles of the degree of mixing and the
scalar dissipation rate. While these profiles oscillate with
time as the slugs of the two pure fluids enter the domain in
alternating fashion, time averaging leads to slowly varying
longitudinal profiles. We define the longitudinal concen-

tration variance�2ðx; tÞ � c2 � �c2, the longitudinal degree

of mixing ��ðx; tÞ � 1� �2=�2
max, and the longitudinal

scalar dissipation rate ��ðx; tÞ � jgj2=Pe, where g � rc

and ð�Þ � RW=ls
0

Rtþtw=2
t�tw=2

ð�Þdt0dy denotes averaging in the

transverse direction and in time (we average over a time
window tw of three injection cycles).
The fundamental observation is the development of

three distinct mixing regions along x (Fig. 2). Region I,
closest to the inlet, is a region of active mixing as a result of
the vigorous interaction between fingers from intermittent
injection of the less-viscous fluid. Region II is a well-
mixed region, whose extent grows over time. Region III
is a region of poorly mixed fluid ahead of the well-mixed
region, dominated by the presence of channels of well-
mixed fluid that penetrate through the ambient, more vis-
cous fluid. We have confirmed with simulations (not shown
here) that the behavior of the system is qualitatively and
quantitatively the same even if the effect of Korteweg
stresses [30] is included in the formulation.
The key descriptor of the flow is the location of the

well-mixed front xfðtÞ separating regions II and III, as a

function of time. This front corresponds to the position at
which the average degree of mixing is maximum, ��fðtÞ ¼
maxx ��ðx; tÞ [Fig. 2(e)]. It also corresponds to the point at
which the transverse average of the scalar dissipation rate
is minimum, ��fðtÞ ¼ minx ��ðx; tÞ [Fig. 2(f)].
We now formalize these qualitative observations and

develop an analytical model of the average degree of
mixing in the channel. We formulate two submodels: one
for the channelized region (III), and one for the active-
mixing and well-mixed regions (I and II). Each submodel
originates from the exact average equations of mean con-

centration �c, concentration variance �2, and mean scalar
dissipation rate ��. For example, we obtain the exact equa-

tions for �c and c2 by premultiplying the advection-
diffusion equation (1) by 1 and c, respectively, integrating
in y, making use of the divergence theorem, and incorpo-
rating periodicity in y:

@t �cþ @x

�
uc� 1

Pe
@x �c

�
¼ 0; (4)

@tc
2 þ @x

�
uc2 � 1

Pe
@xc

2

�
¼ �2 ��: (5)

FIG. 1 (color online). Snapshot of the concentration field dur-
ing the alternating injection of more-viscous (dark) and less-
viscous (light) fluids. Viscous fingering at the displacement front
promotes mixing of the two fluids. At high viscosity contrast,
however, a few dominating fingers coalesce to form persistent
channels. These channels serve as preferential pathways for
subsequent slugs of the less-viscous fluid, inhibit transverse
mixing, and shield growth of adjacent fingers. The displacement
corresponds to a viscosity ratio M � 33 (R ¼ 3:5) and Péclet
number Pe ¼ 2000. See Supplemental Material for videos [39].
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Region III is characterized by channeling, where the
less-viscous fluid spreads longitudinally through fast-
moving channels ahead of the well-mixed front. This
dominance of heterogeneous fluid displacement over mix-
ing suggests that we can pose a hyperbolic model by
neglecting diffusion. The development of hyperbolic mod-
els (also called fractional flow formulations) of average
concentrations that capture the fingering-enhanced spread-
ing has a long history [31–33]. Here, we extend this
approach to develop a hyperbolic fractional-flow model

of mixing, which of course must involve higher-order
moments of the concentration field. Neglecting diffusion
in Eqs. (4) and (5) (that is, taking Pe ! 1), we obtain a
hyperbolic approximation for the propagation of the mean
concentration and the mean scalar energy: @t �cþ @xuc ¼ 0

and @tc
2 þ @xuc

2 ¼ 0, respectively. Combining these
equations we immediately obtain a hyperbolic approxima-
tion for the average degree of mixing ��:

@t ��þ @xu� ¼ 0: (6)

We provide closure for this equation with a fractional-
flow formulation, in which we model u� as a function of ��
alone: the fractional-flow function fð ��Þ. Different models
of the fractional-flow function have been proposed for the
mean concentration [e.g.,[33–35]]. Here we use

fð ��Þ ¼ Meff ��

1þ ðMeff � 1Þ �� ;

Meff ¼ ð�þ ð1� �ÞMð1�rsÞ=4Þ4;
(7)

where � is the mixing ratio, defined as the degree of
mixing in the ‘‘effective’’ displacing fluid in the channel-
ized region III, and Meff is the effective viscosity ratio of
the more-viscous to the less-viscous fluid in the channel-
ized region, estimated using the quarter-power mixing rule.
Equation (7) is based on Koval’s model [33], modified for
region III where the less-viscous fluid in the channels—
with average concentration c ¼ rs—displaces the more-
viscous fluid with c ¼ 0. The function (7) is concave, so
the solution to Eq. (6) is a rarefaction wave where the
derivative � ¼ f0ð ��Þ is the speed of propagation of degree
of mixing �� [36]. The solution at different times can
therefore be understood as a simple stretching of the
characteristic velocity � .
We test the validity of this fractional-flow model by

comparing the model predictions with direct numerical
simulations (Fig. 3). In the channeling region, the averaged
degree of mixing from simulations indeed behaves as a
continuous rarefaction wave that stretches with time, and
this is captured nicely by the analytical model. From the

FIG. 3 (color online). Time evolution of the profiles of average
degree of mixing ��, for R ¼ 2 and Pe ¼ 2000. The results from
averaging a high-resolution simulation in the channelized region
(large circles) are well captured by the hyperbolic mixing model
(blue solid lines). Shown are three different times (t ¼ 7, 9, and
11) that illustrate the self-similar x� t character of the degree of
mixing in the channelized region. Inset: Fractional-flow function
obtained from averaging of the direct numerical simulations
(symbols) and from the proposed model (7) with � ¼ 0:5, for
R ¼ 2 (black circles) and R ¼ 3:5 (red crosses).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 2 (color online). (a) Concentration c, (b) degree of mix-
ing �, and (c) scalar dissipation rate log� from an alternating
injection simulation with viscosity ratio M ¼ expð2Þ � 7 and
Péclet number Pe ¼ 2000 at time t ¼ 18:6. the degree of mixing
is high (white) where mixing has already taken place. Scalar
dissipation rate is high (white) at the interfaces where the fluid is
actively being mixed. (d)–(f) Longitudinal profiles of concen-
tration �c, degree of mixing ��, and scalar dissipation rate ��,
averaged over a moving time window (of duration equal to 3
injection cycles, although the same behavior holds for different
averaging windows). �� reaches a maximum where fingering
begins and a minimum where channeling begins, congruent
with a nonmonotonic degree of mixing �� with x. (g) The
time-averaged probability density function (PDF) of concentra-
tion evolves from two deltalike functions (segregated pure fluids
near x ¼ 0 in region I) to a Gaussian-like function (well-mixed
fluids in region II) to an anomalous distribution (channeling in
region III). The vertical dashed lines indicate the boundaries of
the three mixing regions at time t ¼ 15; xf denotes the position

of the well-mixed front, which is the position of the maximum
longitudinal degree of mixing in the domain ��f at a given time.
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profiles of average degree of mixing at different times
in the channelized region we compute the numerical
fractional-flow function, which is well approximated for
a wide range of viscosity contrastsM by function (7) with a
single value of the mixing ratio, � ¼ 0:5 (Fig. 3, inset).

We now turn our attention to modeling regions I and II.
Because these are regions of active mixing, one cannot
neglect diffusion. We develop a mixing model from the

exact equations of average concentration variance �2 and
average scalar dissipation rate ��. We obtain the former by
combining Eqs. (4) and (5) and the latter by taking the
gradient of the advection-diffusion equation (1) and then
the dot product with rc, integrating in y and exploiting
periodicity in y:

@t ��þ @x

�
u�� 1

Pe
@x ��

�
¼ � 2

Pe
ru:g � g� 2

Pe2
rg:rg:

(8)

From Figs. 2 and 3, it is clear that in regions I and II the
average degree of mixing �� reaches a steady-state profile,
and therefore can be described as a function of x only. The
fundamental observation is that the flow approaches statis-
tical homogeneity due to the many tip-splitting and finger-
merging events and that the diffusive component of the
generalized flux is much smaller than the advective

component, @xxð�Þ=Pe 	 @xuð�Þ. As a result, the spatial

variation in average quantities ( �c, c2, ��) can be understood
as the temporal variation of a parcel of fluid moving with
mean velocity �u (¼1 in the nondimensional equations).

In other words, we can approximate @tð�Þ þ @xuð�Þ �
dð�Þ=dt. This is illustrated in Fig. 4, which shows that a
concatenation of snapshots from a simulation in a periodic
domain of length equal to one injection cycle, under the
space-time mapping x ¼ t, closely resembles the concen-
tration field in regions I and II in the full simulation of
alternating injection [Fig. 2(a)].
From our key observation of space-time duality, the final

approximate equations that require modeling are the aver-
age variance and scalar dissipation rate in a biperiodic
domain. A macroscopic model of mixing due to viscous
fingering under periodic boundary conditions was recently
developed [11,27]. We have confirmed that the predictions
from this analytical model are in excellent agreement with
direct numerical simulations of alternating injection
(Fig. 5), and we refer to [11,27] for the details of this
mixing-dissipation model.
We now put the two submodels together: the dissipation

model in regions I and II and the hyperbolic model in
region III. We use the analytical model to explore the
influence of the system parameters on mixing efficiency
by considering two practical measures: the minimum time
to achieve a desired degree of mixing [Fig. 6(a)] and the
maximum degree of mixing at the outlet (that is, the degree
of mixing of the effluent mixture at long times) [Fig. 6(b)].
We find that a viscosity contrast between the fluids leads to

FIG. 4 (color online). Snapshots from a periodic-flow simula-
tion at successive times for R ¼ 2 and Pe ¼ 2000. Note the
similarity with an alternating injection simulation (Fig. 2),
especially away from the inlet and outlet boundaries. The
domain length in the periodic simulation corresponds to one
injection cycle: in this case, one-tenth of the domain length in the
alternating injection simulation.

FIG. 5 (color online). Average concentration variance (�2,
red) and scalar dissipation rate ( ��, blue) from the alternating
injection simulations (symbols), the analytical dissipation model
(thin solid lines), and periodic simulations (dashed lines) for
R ¼ 2, Pe ¼ 2000, at time t ¼ 22. The results from the periodic
simulation are computed by averaging over the entire volume at
every time step, and the x axis for these curves is time t.
The values of the constants in the dissipation model [11] are
A ¼ 0:89, B ¼ 0:51. The model departs from the simulations
ahead of the well-mixed front xf, where the hyperbolic model

applies instead (region III, Fig. 3).

(a) (b)

FIG. 6 (color online). (a) Contours of the mixing time tout as a
function of the desired degree of mixing at the outlet ��out and the
log-viscosity contrast R, for a domain of dimensionless length
L=ls ¼ 5 and Pe ¼ 4800. The white region beyond the outer-
most contour indicates values of ��out that cannot be achieved for
those flow conditions. The inset shows the comparison of mixing
time for ��out ¼ 0:5 between the mixing model and the simula-
tions. (b) Maximum attainable degree of mixing at the outlet
��max
out as a function of R for different slug sizes ls. As ls decreases,

the Péclet number Pe ¼ Uls=D decreases and the dimensionless
domain length L=ls increases, which results in a higher degree of
mixing. Shown are three cases: L=ls ¼ 5 (triangles), 10
(crosses), 20 (circles); Pe ¼ 4800, 2400, 1200 in the same order.
Solid line is from the mixing model, and symbols are from the
numerical simulations. The insets show snapshots of the con-
centration field at long times for R ¼ 2 and different slug sizes:
L=ls ¼ 5 (bottom), 10 (middle), 20 (top).
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a dramatic increase in mixing efficiency. Mixing from
alternating injection of equal-viscosity fluids (R ¼ 0) is
extraordinarily inefficient at all practical Péclet numbers
[Fig. 6(a)]. Our analysis provides a natural explanation for
the effect of slug size. Decreasing slug size ls (that is,
increasing alternating-injection frequency) leads to both a
decrease in Péclet number Pe ¼ Uls=D and an increase in
dimensionless channel length L=ls, and therefore results in
a higher degree of mixing [Fig. 6(b)]. Mixing efficiency,
however, does not necessarily increase uniformly with
viscosity contrast between the fluids. For a given Péclet
number and dimensionless channel length, there is a vis-
cosity contrast for which the attainable degree of mixing of
the effluent mixture is maximized. This optimum viscosity
contrast promotes rapid creation of interfacial area from
viscous fingering while disallowing strong channeling
effects.

In conclusion, we have shown that the synergetic action
of alternating injection and viscous fingering leads to a
dramatic increase in efficiency when mixing fluids at high
Péclet numbers—a notoriously challenging problem in the
context of planar microfluidic devices as lab-on-a-chip
systems [37,38].
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